Home
Class 11
MATHS
f(x)=sqrt(sin^(-1)(x)+2)-sqrt(1-sin^(-1)...

f(x)=sqrt(sin^(-1)(x)+2)-sqrt(1-sin^(-1)(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

If sin^(-1)x_(i)in[0,1]AA i=1,2,3,....28 then find the maximum value of sqrt(sin^(-1)x_(1))sqrt(cos^(-1)x_(2))+sqrt(sin^(-1)x_(2))sqrt(sin^(-1)x_(3))+sqrt(sin^(-1)x_(3))sqrt(cos^(-1)x_(4))+...+sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_(1))

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

Find the range of f(x)=sqrt((cos^(-1)sqrt((1-x^2))-sin^(-1)x))

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^(2)))-sin^(-1)x)

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is