Home
Class 12
MATHS
If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n...

If `z_r=cos(pialpha)/(n^2)+isin(ralpha)/(n^2),` where `r=1,2,3....,n, then lim_(n->oo) z_1 z_2 z_3...z_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_r =cos (ralpha)/(n^2)+isin (ralpha)/(n^2) ​ , where r=1,2,3,....n, then lim_(n→∞)(z_1.z_2.....z_n) is equal to

If z_r=cos(ralpha/n^2)+i"sin"(ralpha/n^2) , where r=1,2,3,…n, then lim_(nrarrinfty)z_1z_2...z_n is equal to

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where "r=1,2,3,...,nandi=sqrt(-1),"then. "lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where"r=1,2,3,...,nandi=sqrt(-1),"then"lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

If z_r=cos(pi/3^r)+i sin(pi/3^r) where r in N then z_1.z_2.z_3...oo=

If z_n=[cos (pi/2)^(n/2)+i sin (pi/2)^(n/2)] then z_1.z_2.z_3…….oo

If z_(n)=cos((pi)/((2n+1)(2n+3)))+i sin((pi)/((2n+1)(2n+3))) ,then lim_(n rarr oo)(z_(1)*z_(2)*z_(3)...z_(n))=

If z_r=cos(pi/(3^r))+isin(pi/(3^r)),r=1,2,3, , prove that z_1z_2z_3 z_oo=idot

If z_r=cos(pi/(3^r))+isin(pi/(3^r)),r=1,2,3, , prove that z_1z_2z_3 .... z_oo=i