Home
Class 14
MATHS
f(x)=log(100x)((2log(10)x+1)/(-x))" exis...

f(x)=log_(100x)((2log_(10)x+1)/(-x))" exists if? "

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)=log_(100x)((2 log_(10)x+1)/(-x)) , is

Find the domain f(x)=log_(100x)((2log_(10)x+1)/(-x))

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Find the domain of the following functions : f(x) =log_(100x).((2log_(10)x+2)/-x)

The domain of the function f(x)=log_(10)[1-log_(10)(x^(2)-5x+16)] is

If (d)/(dx)[log_(10)(log_(10)x)]=(log_(10)e)/(f(x))," then "f(x)=

Find the domain of the function f(x)=log_(10)((log_(10)x^(2))-5log_(10)x+6)

Statement-1 : f(x) = log_(10)(log_(1/x)x) will not be defined for any value of x. and Statement -2 : log_(1//x)x = -1, AA x gt 0, x != 1