Home
Class 12
MATHS
" 9.Find the valve of "k:" if "lim(x rar...

" 9.Find the valve of "k:" if "lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of k, if lim_(x rarr 1) (x^(4)-1)/(x-1) = lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))

Find value of a if lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr a)(x^(3)-a^(3))/(x^(2)-a^(2))

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

Evaluate lim_(x rarr1)(x^(3)-1)/(x-1)

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

lim_(x rarr oo)(1+(K)/(x))^(x)=

Find the limits (i) (lim)_(x rarr1)[(x^(2)+1)/(x+100)] (ii) (lim)_(x rarr2)[(x^(3)-4x^(2)+4x)/(x^(2)-4)]

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.