Home
Class 12
MATHS
[" Let "z(1)" and "z(2)" be any two non-...

[" Let "z_(1)" and "z_(2)" be any two non-zero complex "],[" numbers such that "3|z_(1)|=4|z_(2)|*If],[z=(3z_(1))/(2z_(2))+(2z_(2))/(3z_(1))" then - "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let Z_1 and Z_2 be any two non-zero complex number such that 3|z_1|= 4 |Z_2 |. If z =( 3z_1)/(2z_2)+(2z_2)/(3z_1) then

Let z_(1) and z_(2) be two non-zero complex number such that |z_(1)|=|z_(2)|=|(1)/(z_(1)+(1)/(z_(2)))|=2 What is the value of |z_(1)+z_(2)| ?

If z_(1)and z_(2) be any two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then prove that, arg z_(1)=arg z_(2) .

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg ((z_1)/(z_2)) is equal to

Let z_(1), z_(2) be two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1) - z_(2)| , then (z_(1))/(bar(z)_(1)) + (z_(2))/(bar(z)_(2)) equals

If z_(1) and z_(2), are two non-zero complex numbers such tha |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to