Home
Class 11
MATHS
If alpha and beta are zeros of the quadr...

If `alpha` and `beta` are zeros of the quadratic polynomial `q(x)=x^2+3x+a, a!=0`, then the value of `alpha^2/beta+ beta^2/alpha` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

if alpha and beta are the root of the quadratic polynomial f(x) = x^2-5x+6 , find the value of (alpha^2 beta + beta^2 alpha)

If alpha and beta are the zeros of the quadratic polynomial p(x)=4x^2-5x-1 , find the value of alpha^2beta+alphabeta^2 .

If alpha and beta are zeroes of the quadratic polynomial f(x) =3x^(2)-5x-2 , then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+6(alpha+1)(beta+1) .

If alpha and beta are zeroes of the quadratic polynomial f(x) =3x^(2)-5x-2 , then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+6(alpha+1)(beta+1) .

If alpha and beta are the zeros of the quadratic polynomial f(x)=6x^2+x-2 , find the value of alpha/beta+beta/alpha .

If alpha and beta are the zeros of the Quadratic Polynomial F(X) = 6x^2 + x − 2 , Find the Value of alpha/beta + beta/alpha

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^2+x-2, find the value of 1/alpha-1/beta

If alpha and beta ar the zeros of the quadratic polynomial f(x)=x^(2)+x-2, find the value of (1)/(alpha)-(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=6x^(2)+x-2, find the value of (alpha)/(beta)+(beta)/(alpha)

If alpha and beta are the zeroes of the quadratic polynomial f(x)=x^2-4x+3 then find the value of alpha^4beta^2+alpha^2beta^4