Home
Class 11
MATHS
Prove that tan^(-1)((x-y)/(1+xy)) + tan^...

Prove that `tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)((z-x)/(1+zx)) =` `tan^(-1)((x^r-y^r)/(1+x^ry^r))+ tan^(-1)((y^r-z^r)/(1+y^rz^r)) + tan^(-1)((z^r-x^r)/(1+z^rx^r))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

tan^(-1)""(x-y)/(1+xy)+tan^(-1)""(y-z)/(1+yz)+tan^(-1)""(z-x)/(1+zx) =tan^(-1)""(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)""(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1) ""(z^(2)-x^(2))/(1+z^(2)x^(2))

Prove that tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)((x+y+z-xyz)/(1-xy-yz-zx))

Prove that |tan^(-1)x-tan^(-1)y|<=|x-y|AA x,y in R

Prove that , tan^(-1)""x+ tan^(-1) ""y+tan^(-1)""z= tan ^(-1)""(x+y+z-xyz)/(1-xy-yz-zx)

Prove the followings : If tan^(-1)((yz)/(xr))+tan^(-1)((zx)/(yr))+tan^(-1)((xy)/(zr))=pi/2 then x^(2)+y^(2)+z^(2)=r^(2) .

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to

If x^(2)+y^(2)+z^(2)=r^(2) , then Tan^(-1)((xy)/(zr))+Tan^(-1)((yz)/(xr))+Tan^(-1)((xz)/(yr))=