Home
Class 12
MATHS
" 6."(1)x tan^(-1)x...

" 6."(1)x tan^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

Solve for x, tan^(-1)(x-1)+tan^(-1)x +tan^(-1)(x+1) =tan^(-1)3x .

solve tan^(-1) 2x + tan^(-1) 3x = pi/4 , if 6x^2 lt 1 .

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

If int (x^(4) + 1)/(x^(6) + 1) dx = A tan^(-1) x + B tan^(-1) x^(3) + c , then (A,B) =