Home
Class 11
MATHS
Prove that tan^(-1)(cotx)+cot^(-1)(tanx...

Prove that `tan^(-1)(cotx)+cot^(-1)(tanx)=pi-2x`

Text Solution

Verified by Experts

LHS
`tan^(-1)(cotx)+cot^(-1)(tanx)`
`tan^(-1)(tan(pi/2-x))+cot^(-1)(cot(pi/2-x))`
`pi/2-x+pi/2-x`
`pi-2x`
RHS.
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x

Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x

Solve: tan^(-1)(cotx)+cot^(-1)(tanx)= pi/4

tan ^(-1) (cot x) + cot ^(-1) (tan x) =(pi)/(4)

Tan^(-1)(cotx)-Tan^(-1)(cot2x)=

prove that tan^(-1)x+cot^(-1)x=pi/2

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)