Home
Class 12
MATHS
" facter tance "tan(2tan^(-1)x)=2tan(tan...

" facter tance "tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

For the equation 2x=tan(2tan^(-1)a)+2tan(tan^(-1)a+tan^(-1)a^(3)) , which of the following is valid ?

For the equation 2x=tan(2tan^(-1)a)+2tan(tan^(-1)a+tan^(-1)a^(3)), which of the following is invalid?

For the equation 2x=tan(2tan^(-1)a)+2tan(tan^(-1)a+tan^(-1)a^(3)), which of the following is invalid?

tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)((2)/(3))

Prove that: tan^(-1)(x)=2tan^(-1)(cosec tan^(-1)x-tan cot^(-1)x)

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is