Home
Class 12
MATHS
If alpha,beta and 1 are the roots of x^3...

If `alpha,beta and 1` are the roots of `x^3-2x^2-5x+6=0` then `(alpha,beta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha,beta,1 are roots of x^(3)-2x^(2)-5x+6=0(alpha>1) then 3 alpha+beta=

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha,beta are the roots of 3x^(2)-5x+7=0 then alpha^(3)+beta^(3)=

If alpha , beta are the roots of 3x ^2 -5x+7=0 then alpha ^3 + beta ^3=

If alpha, beta, 1 are the roots of x ^(3) - 2x ^(2) - 7x + 6 =0, then find alpha, beta.

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=