Home
Class 12
MATHS
Let D be the middle point of the side BC...

Let D be the middle point of the side BC of a triangle ABC. If the triangle ADC is equilateral, then `a^(2) : b^(2) : c^(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

If D is mid point of the side BC of a triangle ABC and AD is perpendicular is AC then (a^(2) - c^(2))/b^(2) =

If D is the midpoint of the side BC of Delta ABC then vec(A)B + vec(A)C =

If D is the middle point of the side BC of the triangle ABC, prove that AB^2 + AC^2 = 2(AD^2 + DC^2) .

If D,E and F be the middle points of the sides BC,CA and AB of the Delta ABC, then AD+BE+CF is

D is a point on the side BC of a triangle ABC /_ADC=/_BAC Show that CA^(2)=CB.CD

D is a point on the side BC of a triangle ABC such that /_ADC= /_BAC . Show that CA^(2)= CB*CD .