Home
Class 12
MATHS
18.tan^(-1)(1)/(a-1)=tan^(-1)(1)/(x)+tan...

18.tan^(-1)(1)/(a-1)=tan^(-1)(1)/(x)+tan^(-1)(1)/(a^(2)-x+1)[2007]

Promotional Banner

Similar Questions

Explore conceptually related problems

If Tan^(-1)(1//(a-1))=Tan^(-1)(1//x)+Tan^(-1)[1//(a^(2)-x+1)] , then x =

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

tan(1/2)(tan^(-1)x+tan^(-1)(1/x))=1

"tan(1/2(tan^(-1)x+tan^(-1)(1/x))) =1

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

If 3 tan ^(-1)((1)/(2+sqrt(3)))-tan ^(-1) (1)/(x)=tan ^(-1) (1)/(3) then x=

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))