Home
Class 9
MATHS
x^(2)-b^(2)+2bc-c^(2)dx...

x^(2)-b^(2)+2bc-c^(2)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Prove that: ((x^(a))/(x^(b)))^(a)-2+ab+b^(2)x((x6b)/(x^(c)))^(b)-2+bc+c^(2)x((x^(c))/(x^(a)))^(c)-2+ca+a^(2)

If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc) , then a , b , c can be in

If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc) , then a , b , c can be in

If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc) , then a , b , c can be in

Prove that: 2x^(2)+2b^(2)+2c^(2)-2ab-2bc-2ca=[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]