Home
Class 10
MATHS
Find the quotient (x^(5)+x^(4)+x^(3)+x^...

Find the quotient `(x^(5)+x^(4)+x^(3)+x^(2))/(x^(3)+x^(2)+x+1)` When `x != 1`.

Text Solution

Verified by Experts

The correct Answer is:
`[x^(2)]`
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    VGS PUBLICATION-BRILLIANT|Exercise Part -A : Observation Material to solve various questions given in the public examination ( 2 Mark Questions)|6 Videos
  • POLYNOMIALS

    VGS PUBLICATION-BRILLIANT|Exercise Part -A : Observation Material to solve various questions given in the public examination ( 4 Mark Questions)|13 Videos
  • POLYNOMIALS

    VGS PUBLICATION-BRILLIANT|Exercise Optional exercise|6 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|262 Videos
  • PROBABILITY

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|220 Videos

Similar Questions

Explore conceptually related problems

If the order of ax^(5) + 3x^(4) + 4x^(3) + 3x^(2) + 2x +1 is 4 then a = …………..

If f(x) = 2x^(4) + 5x^(3) -7x^(2) - 4x + 3 then f(x -1) =

Evaluate int_(2)^(3)(2x^(5)+x^(4)-2x^(3)+2x^(2)+1)/((x^(2)+1)(x^(4)-1))dx

Evaluate int_(2)^(3)(2x^(5)+x^(4)-2x^(3)+2x^(2)+1)/((x^(2)+1)(x^(4)-1))dx

If 1+ 2x + 3x^(2) + 4x^(3) + …oo= (9)/(4) (|x| lt 1) then x=

The remainder when x^(5) - 2x^(4) + 4x^(3) + 3x^(2) + 5x - 7 is divided by x - 1 is

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and reminder in each of the following. (ii) p(x) = x^(4) - 3x^(2)+4x+5, g(x) = x^(2) + 1 - x

The remainder when 2x^(5) - 3x^(4) + 5x^(3) - 7x^(2) + 3x - 4 is divided by x - 2 is

If A, B, C are the remainders of x^(3) - 3x^(2) - x + 5, 3x^(4) - x^(3) + 2x^(2) - 2x - 4, 2x^(5) - 3x^(4) + 5x^(3) - 7x^(2) + 3x - 4 when divided by x + 1, x + 2, x - 2 respectively then the ascending order of A, B ,C is