Home
Class 10
MATHS
If alpha, beta, gamma are the zeroes of ...

If `alpha, beta, gamma` are the zeroes of the cubic polynomial `ax^(3) + bx^(2) + cx +d` and `(a != 0)` , then `alpha beta gamma` = ……….

A

`d/a`

B

`- d/a`

C

`-b/a`

D

`c/a`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS

    VGS PUBLICATION-BRILLIANT|Exercise Creative Bits for CCE Model Examination|119 Videos
  • POLYNOMIALS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|244 Videos
  • POLYNOMIALS

    VGS PUBLICATION-BRILLIANT|Exercise Creative Questions for CCE Model Examination|9 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|262 Videos
  • PROBABILITY

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|220 Videos

Similar Questions

Explore conceptually related problems

Match the following : If alpha,beta,gamma are zeroes of a cubic polynomial ax^3+bx^2+cx+d(a ne 0) , then………

If alpha,beta,gamma roots of a cubic polynomial then alpha beta gamma =……

Knowledge Check

  • Match of the following : If alpha, beta , gamma are zeroes of a cubic polynomial ax^(3) + bx^(2) + cx + d , (a != 0) , then ………. {:((i) alpha+beta +gamma, (a) -d/a),((ii) alphabeta +betagamma+gamma alpha, (b) c/a),((iii) alphabeta gamma, (c) -b/a):}

    A
    (i) - c , (ii) - b , (iii) -a
    B
    (i) - a , (ii) - b , (iii) -c
    C
    (i) - b , (ii) - a , (iii) - c
    D
    (i) - c , (ii) - a , (iii) - b
  • If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then (alpha)^2 + (beta)^2 + (gamma)^2 = ………….

    A
    `(b^(2) + 4ac)/(2)`
    B
    `(b^(2) - 2ac)/(a^2)`
    C
    `(b + 2ac)/(a^2)`
    D
    none
  • If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then 1/(alpha) + 1/(beta) + 1/(gamma) = ………….

    A
    `1/d`
    B
    `1/c`
    C
    `c/d`
    D
    `-c/d`
  • Similar Questions

    Explore conceptually related problems

    If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

    If alpha, beta , gamma are the zeros of the polynomial x^(3) - px^(2) + qx - r then 1/(alpha beta) + 1/(beta gamma) + 1/(gamma alpha) = …………..

    If alpha , beta , gamma are roots of a cubic polynomial alpha + beta + gamma = ……………..

    If alpha, beta, gamma are the roots of the equation x^(3) - ax^(2) + bx -c = 0 , then sum alpha^(2) (beta + gamma)=

    If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :