Home
Class 10
MATHS
1^(3) + 2^(3) + 3^(3) + ……….. + n^(3) = ...

`1^(3) + 2^(3) + 3^(3) + ……….. + n^(3) = ………`

A

`n/2`

B

`((n+1)^(2))/(2)`

C

`(n(n+1))/(2)`

D

`(n^(2)(n+1)^(2))/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|378 Videos
  • PROGRESSIONS

    VGS PUBLICATION-BRILLIANT|Exercise Part - B Observation bits to solve various bits (Given in the public examination)|35 Videos
  • PROBABILITY (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise PROBABILITY (MULTIPLE CHOICE QUESTION)|20 Videos
  • PROGRESSIONS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise PROGRESSIONS (MULTIPLE CHOICE QUESTION)|20 Videos

Similar Questions

Explore conceptually related problems

If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

((1)/(2), (2)/(2) )/(1^3) + ((2)/(2) , (3)/(2) )/( 1^3 + 2^3) + ((3)/(2) , (4)/(2) ) / (1^(3) + 2^(3) + 3^(3) ) + ..... n terms

Mean of the numbers 1,2,3,…,n with respective weights 1^(2) + 1, 2^(2) + 2, 3^(2) + 3,…,n^(2)+n is

sum((1^(2) + 2^(2) +3^(2) + …. + n^(2))/(1+2+3+….+n))

1^(3) + 1^(2) + 1+2^(3) + 2^(2) + 2+3^(2) + 3^(2) + 3+3… 3n terms =