Home
Class 10
MATHS
x=a sin theta, y=a cos theta " then "x^2...

`x=a sin theta, y=a cos theta " then "x^2+y^2`=…………

A

`(a)/(3)`

B

`(a)/(2)`

C

a

D

`a^2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF TRIGONOMETRY

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|154 Videos
  • APPLICATIONS OF TRIGONOMETRY

    VGS PUBLICATION-BRILLIANT|Exercise PUBLIC EXAMINATION|13 Videos
  • APPENDIX MATHEMATICAL MODELLING

    VGS PUBLICATION-BRILLIANT|Exercise THINK & DISCUSS|1 Videos
  • COORDINATE GEOMETRY

    VGS PUBLICATION-BRILLIANT|Exercise CCE model examination|151 Videos

Similar Questions

Explore conceptually related problems

If x= a cos^(2) theta sin theta and y= a sin^(2) theta cos theta , " then " ((x^(2)+y^(2))^(3))/(x^(2)y^(2))=

If x =a ( theta + sin theta), y =a (1 - cos thea) then (d ^(2) y)/(dx ^(2)) at theta = (pi)/(4) is

If x = (sin^(3)theta)/(cos^(2) theta)and y = (cos^(3) theta)/(sin^(2)theta) , where sin theta + cos theta = (1)/(2) , " then " x + y =

If x = cos theta + theta sin theta, y = sin theta - theta cos theta then (d ^(2) y)/(dx ^(2)) =

If x= cot theta + cos theta , y= cot theta - cos theta , " then " (x^(2)-y^(2))^(2)=

If x=a ( theta - sin theta), y =a (1 - cos theta) then y _(2) at theta = pi //4 is

If x =a (cos theta + theta sin theta ), y =a (sin theta - theta cos theta ) then (dy)/(dx) =

Find the equations of tangent and normal to the curve x=a( theta- sin theta), y=a(1 -cos theta)" at "theta=pi//2