Home
Class 13
MATHS
int(1)/(sin(x-a)sin(x-b))dx=A log|(sin(x...

int(1)/(sin(x-a)sin(x-b))dx=A log|(sin(x-b))/(sin(x-a))|

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(k)/(sin(x-a)sin(x-b))dx=log[(sin(x-a))/(sin(x-b))]+c, then k=

int (dx)/(sin(x-a)sin(x-b)

int (dx)/(sin(x-a)sin(x-b)) is

int(dx)/(sin(x+a)sin(x+b))=

int dx/(sin(x-a)sin(x-b)) =

If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c , then k=

int (sin (x-a))/(sin (x-b))dx=

If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then

int (dx)/(sin (x-a) sin (x-b)) is :