Home
Class 12
MATHS
log0 5sqrt((x-4)/(x+3)) < log(0.5) 2...

`log_0 5sqrt((x-4)/(x+3)) < log_(0.5) 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0, what is the value of x? a.2 c.3 c.4 d.5

If log_(7)log_(5)(sqrt(x)+5+sqrt(x))=0 , find the value of x.

If (log)_7(log)_5(sqrt(x+5)+sqrt(x))=0, what is the value o x ? a. 3 b. 4 c. 2 d. 5

The solution of the equation (log)_7(log)_5(sqrt(x+5)+sqrt(x))=0 is...

Solve : log_7log_5 (sqrt(x+5)+sqrt(x))=0

Solve :log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0

If log_(e) log_(5) [sqrt(2x - 2) +3 ] = 0

What is the value of x in the following expression? log_(7)log_(5)[sqrt((x+5))+sqrt(x)]=0

Find the value of x satisfying the equation,sqrt((log_(3)3sqrt(3)x+log_(x)3sqrt(3)x)*log_(3)x^(3))+sqrt(((log_(3)(3sqrt(x)))/(3)+(log_(x)(3sqrt(x)))/(3))*log_(3)x^(3))=2

" If ||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4 ) then "