Home
Class 12
MATHS
[I(n)=int(0)^((pi)/(4))tan^(n)xdx," then...

[I_(n)=int_(0)^((pi)/(4))tan^(n)xdx," then "],[lim_(n rarr oo)n(I_(n)+I_(n+2))=]

Promotional Banner

Similar Questions

Explore conceptually related problems

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I_(n)=int_(0)^(pi//4) tan^(n) x dx then {:(" " Lt),(n rarr oo):}n(I_(n)+I_(n+2))=

Fundamental theorem of definite integral : If I_(n)=int_(0)^(pi/4)tan^(n)dx then lim_(ntooo)n(I_(n)+I_(n+2))=.......

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is