Home
Class 12
MATHS
If y=e^(acos^(-1)x), -1lt=xlt=1,show tha...

If `y=e^(acos^(-1)x), -1lt=xlt=1,`show that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0`.

Text Solution

AI Generated Solution

To solve the problem, we need to show that: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0 \] where \( y = e^{a \cos^{-1}(x)} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a cos^(-1)x),-1<=x<1, show that(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1 then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

If y=e^(a)sin^((-1_(x))),-1<=x<=1, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2

If y=e^(m)sin^((-1)x), prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0