Home
Class 11
MATHS
" (i) "(1)/(1,3)+(1)/(3.5)+(1)/(5.7)+......

" (i) "(1)/(1,3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1))=(n)/(2n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.3) + (1)/(3.5) + (1)/(5.7) + …….+(1)/((2n-1)(2n+1)) = (n)/(2n+1)

Prove by induction that (1)/(1*3)+(1)/(3*5)+(1)/(5*7)+ . . .+(1)/((2n-1)(2n+1))=(n)/(2n+1)(ninNN) .

Prove by the method of induction, (1)/( 1.3) + (1)/( 3.5) + (1)/( 5.7) + . . . + (1)/( (2n - 1)(2n + 1)) = (n)/(2 n +1)

underset(n to oo)lim {(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+.....+(1)/((2n-1)(2n+1))}=

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))