Home
Class 12
MATHS
If u=x^2tan^(-1)(y/x)-y^2tan^(-1)(x/y),p...

If `u=x^2tan^(-1)(y/x)-y^2tan^(-1)(x/y)`,prove that `(del^2u)/(delxdely)=(x^2-y^2)/(x^2+y^2)`

Text Solution

Verified by Experts

`u = x^2 tan^-1(y/x)-y^2tan^-1(x/y)`
`=> (del u)/ (del x) = 2x tan^-1(y/x) + x^2(x^2/(x^2+y^2))(-y/x^2) - y^2(y^2/(x^2+y^2))(1/y) `
`=> (del u)/ (del x) = 2x tan^-1(y/x) - (x^2y)/(x^2+y^2) - (y^3)/(x^2+y^2)`
Now, `(del^2u)/(delxdely) = 2x(x^2/(x^2+y^2))(1/x) - [(x^2(x^2+y^2)-x^2y(2y))/(x^2+y^2)^2] - [(3y^2(x^2+y^2)- y^3(2y))/(x^2+y^2)^2]`
`(del^2u)/(delxdely) = (2x^2)/(x^2+y^2) - [(x^4+x^2y^2-2x^2y^2+3x^2y^2+3y^4-2y^4)/(x^2+y^2)^2]`
`(del^2u)/(delxdely) = (2x^2)/(x^2+y^2) - [(x^4+2x^2y^2+y^4)/(x^2+y^2)^2]`
`(del^2u)/(delxdely) = (2x^2)/(x^2+y^2) - [(x^2+y^2)^2/(x^2+y^2)^2]`
`(del^2u)/(delxdely) = (2x^2)/(x^2+y^2) -1`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If u =tan^(-1)((x)/(y)) show that (del^(2)u)/(delxdely) = (del^(2)u)/(delydelx) .

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

If u= tan^(-1) ((x^(3) + y^(3))/(x-y)) , Prove that x(del u)/(del x) + y(del u)/(del y) = sin 2u .

If u =x ^(3) +2xy^(2) -x ^(2)y show that (del^(2)u)/(delxdely) =(del^(2)u)/(delydelx).

If u = (x^2+y^2+z^2)^(-1/2) then prove that (del^2u)/(delx^2)+(del^2u)/(dely^2)+(del^2u)/(delz^2) =0

If u = cos ^(-1) ((x)/(y)) prove that x (del u)/(delx) + y (del u)/(dely)=0.

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a , prove than (dy)/(dx)=(y)/(x).

If y=e^(tan^-1x), prove that (1+x^2)y_2+(2x-1)y_1=0

If u = x/y^2- y/x^2 , show that (del^2u)/(delxdely)=(del^2u)/(delydelx) .