Home
Class 12
MATHS
log(x)tan x...

log_(x)tan x

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in(0,(pi)/(2))-{1,(pi)/(4)} then the expression (log_(cos x)(x)*log_(tan x)(x))/(log_(cos x)(x)+log_(tan x)(x)) simplifies to

underset(x to 0^(+))lim log_(tan x) (tan 2x) is equal to

Evaluate: underset(x rarr0^+)lim log_(tan x)tan2x .

Find lim_ (x rarr o) log_ (tan x) tan2x

int(sec^(2)x)/(log(tan x)^(tan x)dx)

If f(x) = log (tan x), then f^(')(x) =

If f(x)=(log_(cotx)tan x)(log_(tan x)cotx)+"tan"^(-1)(4x)/(4-x^(2)) then 2f'(2) is equal to -

e^(tan^(-1)x)log(tan x)

If y= (sin x )^(x)+ log x + (logx) ^(tan x) +x^(a) ,then (dy)/(dx) =

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1