Home
Class 12
MATHS
lim(x->-oo)((x^4+1)sqrt(x^6+x^3+1))/(x^7...

`lim_(x->-oo)((x^4+1)sqrt(x^6+x^3+1))/(x^7+x^3+x^4+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

lim_(xrarr oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3)=

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

Evaluate: lim_(x->oo)(sqrt(3x^2-1)-sqrt(2x^2-1))/(4x+3)