Home
Class 12
MATHS
lim(x->0){(1+sin^2x)^(1/3)-(1-2tanx)^(1/...

`lim_(x->0){(1+sin^2x)^(1/3)-(1-2tanx)^(1/4)}/(sinx+tan^2x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->0)(e^(sinx)-(1+sinx))/({tan^(-1)(sinx)}^2)

lim_ (x rarr0) ((1 + sin ^ (2) x) ^ ((1) / (3)) - (1-2tan x) ^ ((1) / (4))) / (sin x + tan ^ (2) x)

lim_(x->0)(1/(x^2)-1/(tan^2x))

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

lim_(x rarr0)(sqrt(1+sin3x)-1)/(log(1+tan2x))

lim_(x rarr0)(sin^(-1)x+3x)/(tan x+2sin((1)/(2)sin^(-1)x)[3-4sin^(2)((1)/(2)sin^(-1)x)])=

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to: