Home
Class 14
MATHS
tan^(-1)(sec x+tan x)=(pi)/(4)+(x)/(2)...

tan^(-1)(sec x+tan x)=(pi)/(4)+(x)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x:tan^(-1)(sec x+tan x),-(pi)/(2)

Differentiate tan^(-1) (sec x + tan x), -(pi)/(2) lt x lt (pi)/(2)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Differentiate tan^(-1)(sec x+tan x),^(*)-pi/2

Prove that (1)/(sec x-tan x)+(1)/(sec x+tan x)=(2)/(cos x)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Provet that " tan " ((pi)/(4) +(x)/(2)) + " tan " ((pi)/(4)-(x)/(2)) = " 2 sec x"

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)