Home
Class 12
MATHS
" The value of "lim(x rarr(pi)/(4))(tan^...

" The value of "lim_(x rarr(pi)/(4))(tan^(3)x-tan x)/(cos(x+(pi)/(4)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

lim_(x rarr(pi+)/(2))((cos(tan^(-1)(tan x)))/(x-(pi)/(2)))

lim_ (x rarr (pi) / (4)) (1-tan x) / (x- (pi) / (4))

lim_ (x rarr (pi) / (4)) (tan x) ^ (tan2x)

lim_ (x rarr (pi) / (2)) (sec x-tan x)