Home
Class 12
MATHS
(b)|[a,b,c],[a^(2),b^(2),c^(2)],[a^(3),b...

(b)|[a,b,c],[a^(2),b^(2),c^(2)],[a^(3),b^(3),c^(3)]|=abc(a-b)(b-c)(c-a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-b)(b-c)(c-a)

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

Match the following from List - I to List - II {:("List-I","List-II"),((I)|{:(1,1,1),(a,b,c),(bc,ca,ab):}|=,(a)(a-b)(b-c)(c-a)),((II)|{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3)):}|=,(b)(a-b)(b-c)(c-a)abc),((III)|{:(1,1,1),(a,b,c),(a^(3),b^(3),c^(3)):}|=,(c)(a-b)(b-c)(c-a)(a+b+c)):}

Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)

Prove the following identities : |{:(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3)):}|=abc(a-b)(b-c)(c-a) .

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0