Home
Class 11
MATHS
6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i...

6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

6i^(50) + 5i^(33) - 2i^(15) + 6i^(48) = 7i .

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .

simplify the following 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

If 2i^2+6i^3+3i^(16)-6i^(19)+4i^(25)=x+iy , then