Home
Class 10
PHYSICS
A = vec(i) + vec(j) . What is the angle...

A = `vec(i) + vec(j)` . What is the angle between the vector and x-axis ?

Text Solution

Verified by Experts

Given that , `vec(A) = vec(i) + vec(j)`
`|vec(A)| = sqrt((1)^(2) + (1) ^(2)) = sqrt(2)`
If `theta` is the angle made by the vector with x-axis then ,
`cos theta = (A)/(|vec(A)|) rArr cos theta = (1) /(sqrt(2))rArr theta = 45^(@)`
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    VGS PUBLICATION-BRILLIANT|Exercise Short Answer Questions (4 marks)|9 Videos
  • MOTION IN A PLANE

    VGS PUBLICATION-BRILLIANT|Exercise Problems|12 Videos
  • MOTION

    VGS PUBLICATION-BRILLIANT|Exercise OBJECTIVE TYPE QUESTIONS|13 Videos
  • NEW MODEL PAPER CLASS X - PHYSICAL SCIENCE

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - IV|14 Videos

Similar Questions

Explore conceptually related problems

The angle between vec(a) and vec(b) " is " 0^(@) then angle between 2 vec(a) and -3 vec(b) is

Find the angle between two vectors vec(A)=2i+j-k and vec(B)=i-k .

Let vec(a)= 2vec(i) + vec(j)-2vec(k), vec(b)= vec(i) + vec(j) " if " vec(c ) is a vector such that vec(a).vec(c )= |vec(c )|, |vec( c)- vec(a)|= 2 sqrt2 and the angle between vec(a) xx vec(b) and vec(c ) " is " 30^(@) , then find |(vec(a) xx vec(b)) xx vec( c)|