Home
Class 10
PHYSICS
Derive the expressions for displacement ...

Derive the expressions for displacement velocity and acceleration of a particle executes S.H.M.

Text Solution

Verified by Experts

Displacement of a body in S.H.M. `X=A cos(omegat+phi)`.
i) Displacement(x): At `t=0` displacement `x=A` i.e., extreme position when `omegat=phi=90^(@)` displacement `x=0` at mean position at any point `x=Acos(omegat+phi)`.
ii) Velocity (V): Velocity of a body in S.H.M. is `V=(dx)/(dt)=(d)/(dt){Aomegacos(omegat+phi)}`
`therefore V=-A omegasin(omegat+phi) or V=-omegasqrt(A^(2)-x^(2))`
When `(omegat=phi)=0` then velocity `v=0`. For points where `(omegat+phi)=90^(@)`
Velocity `V=-Aomega`i.e., velocity is maximum.
iii)Acceleration (a): Acceleration of a body in S.H.M. is `a=(dy)/(dx)`
`=d/dt(-Aomegasin(omegat+phi)=-Aomega^(2)cos(omegat+phi)=-omega^(2)x)`
`a_(max)=-omega^(2)A.`
Promotional Banner

Topper's Solved these Questions

  • OSCILLATIONS

    VGS PUBLICATION-BRILLIANT|Exercise LONG ANSWER QUESTIONS|3 Videos
  • OSCILLATIONS

    VGS PUBLICATION-BRILLIANT|Exercise PROBLEMS|17 Videos
  • OSCILLATIONS

    VGS PUBLICATION-BRILLIANT|Exercise PROBLEMS|17 Videos
  • NEW MODEL PAPER CLASS X - PHYSICAL SCIENCE

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - IV|14 Videos
  • PHYSICAL SCIENCE :PAPER -1

    VGS PUBLICATION-BRILLIANT|Exercise PART - B|7 Videos

Similar Questions

Explore conceptually related problems

Presents graphically the variants of displacement, velocity and acceleration with time for a particle in S.H.M.

At the equilibrium position of a particle executing S.H.M

What fraction of the total energy is K.E. when the displacement is one half of a amplitude of a particle executing S.H.M?