Home
Class 12
MATHS
If I(m,n)=intcos^mxsinnxdx=f(m,n)I((m-1)...

If `I_(m,n)=intcos^mxsinnxdx=f(m,n)I_((m-1),(n-1))-(cos^mxcosnx)/(m+n)`, then f(m,n)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(m,n)=int cos^(m)x sin nxdx=f(m,n)I_(m-1)-(cos^(m)x cos nx)/(m+n), then f(m,n)=

I_(m,n)=int(cos^mxcosnxdx=(cos^mxsinx)/(m+n)+f(m,n)I_(m-1,n-1) ,

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I_(m"," n)=int cos^(m)x*cos nx dx , show that (m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))

If I_(m"," n)=int cos^(m)x*cos nx dx , show that (m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))

If I_(m"," n)=int cos^(m)x*cos nx dx , show that (m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))

If I_(m,n) = int cos^m x cdot cos nx cdot dx show that (m + n) I_(m,n) = cos^m x cdot sin nx + m I_(m - 1, n-1)

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx