Home
Class 9
MATHS
(d)(4a-2b-3c)^(2)...

(d)(4a-2b-3c)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a!=0 and the line 2bx+3cy+4d=0 passes through the points of intersection of the parabolas y^(2)=4ax and x^(2)=4ay, then: d^(2)+(2b+3c)^(2)=0 (b) d^(2)+(3b+2c)^(2)=0d^(2)+(2b-3c)^(2)=0 (d) d^(2)+(3b-2c)^(2)=0

If a!=0 and the line 2bx+3cy+4d=0 passes through the points of intersection of the parabolas y^(2)=4ax and x^(2)=4ay, then of (a)d^(2)+(2b+3c)^(2)=0(b)d^(2)+(3b+2c)^(2)=0(c)d^(2)+(2b-3c)^(2)=0 (d)none of these

If (a-2b-3c+4d)(a+2b+3c+4d) = (a+2b-3c-4d)(a-2b+3c-4d) then 2ad =

If (a-2b-3c+4d)(a+2b+3c+4d) = (a+2b-3c-4d)(a-2b+3c-4d) then 2ad = "(a) 3bc (b) bc (c) 5bc (d) 2bc"

If a/b = c/d = e/f , then prove that each of these ratio's is equal to ((4a^(2)+3c^(2)-7e^(2))/(4b^(2)+3d^(2)-7f^(2)))^(1//2)

If a!=0 and the line 2b x+3c y+4d=0 passes through the points of intersection of the parabolas y^2=4a x and x^2=4a y , then (a) d^2+(2b+3c)^2=0 (b) d^2+(3b+2c)^2=0 (c) d^2+(2b-3c)^2=0 (d)none of these

If a!=0 and the line 2b x+3c y+4d=0 passes through the points of intersection of the parabolas y^2=4a x and x^2=4a y , then (a) d^2+(2b+3c)^2=0 (b) d^2+(3b+2c)^2=0 (c) d^2+(2b-3c)^2=0 (d)none of these

If a!=0 and the line 2b x+3c y+4d=0 passes through the points of intersection of the parabolas y^2=4a x and x^2=4a y , then (a) d^2+(2b+3c)^2=0 (b) d^2+(3b+2c)^2=0 (c) d^2+(2b-3c)^2=0 (d)none of these

If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d) , then 2b c is equal to 3/2 (b) (3a)/(2d) (c) 3a d (d) a^2d^2

If a,b, and c are in H.P.then th value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is ((a+c)(3a-c))/(4a^(2)c^(2)) b.(2)/(bc)-(1)/(b^(2)) c.(2)/(bc)-(1)/(a^(2)) d.((a-c)(3a+c))/(4a^(2)c^(2))