Home
Class 9
MATHS
If [(a,a^2 , a^3 - 1),(b,b^2 , b^3-1) , ...

If `[(a,a^2 , a^3 - 1),(b,b^2 , b^3-1) , (c,c^2,c^3-1)] = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1):}|=0 then

If a, b, c are the sides of a scalene triangle such that |[a , a^2 , a^(3)-1 ],[b , b^2 , b^(3)-1],[ c, c^2 , c^(3)-1]|=0 , then the geometric mean of a, b c is

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are non coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 and vectors (1,a,a^(2)),(1,b,b^(2)) and (1,c,c^(2)) are non coplanar then the product abc=