Home
Class 12
MATHS
If cos" "y" "=" "x" "cos" "(a" "+" "y) ...

If `cos" "y" "=" "x" "cos" "(a" "+" "y)` , with `cos" "a!=+-1` , prove that `(dy)/(dx)=(cos^2(a+y)/(sina))` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y= x cos (a + y) , with cos a ne +- 1 , prove that (dy)/(dx) = (cos^(2) (a + y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot