Home
Class 12
MATHS
If the circle x^2 + y^2 + ( 3 + sin beta...

If the circle `x^2 + y^2 + ( 3 + sin beta) x + 2 cos alpha y = 0` and `x^2 + y^2 + 2 cos alpha x + 2 c y = 0` touch each other, then the maximum value of c is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 , then cot((x+y)/(2)) =

If the circles x^2+y^2-9=0 and x^2+y^2+2alpha x+2y+1=0 touch each other, then alpha is (a) -4/3 (b) 0 (c) 1 (d) 4/3

If the circles x^2+y^2=9 and x^2+y^2+8y+c=0 touch each other, then c is equal to:

If x^(2)-2cos alpha x+1=0 and y^(2)-2cos alpha y+1=0 then 2cos(alpha+beta)=

If x sin ^3 alpha + y cos^3 alpha = sin alpha cos alpha and x sin alpha - y cos alpha =0 , then x^2 +y^2 is

If cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 then cot ((x + y) / (2)) =

cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 then cot ((x + y) / (2)) is