Home
Class 12
MATHS
Prove that (a) (1+i)^n+(1-i)^n=2^((n+2)/...

Prove that `(a) (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4)`, where n is a positive integer. `(b) (1+isqrt(3))^n+(1-isqrt(3)^n=2^(n+1)cos((npi)/3)`, where n is a positive integer

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

If n is a positive integer, then, (1+isqrt3)^n+(1-isqrt3)^n=

For a positive integer n show that (1+isqrt3)^n+(1-isqrt3)^n=2^(n+1) "cos"(npi)/3

Prove that (1 + sqrt3i)^n + (1 - sqrt3i)^n = 2^(n+1) cos ((npi)/3) for any positive integer n

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

If n is be a positive integer,then (1+i)^(n)+(1-i)^(n)=2^(k)cos((n pi)/(4)), where k is equal to

If n is a positive integer and (1+isqrt3)^(n)+(1-isqrt3)^(n)=2^(n+1)costheta , then the value of theta is

For a positive integer n show that (1+i)^n+(1-i)^n=2^((n+2)/2) "cos((npi)/4)