`log_2(60)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((1)/(log_(3)60)+(1)/(log_(4)60)+(1)/(log_(5)60)) is

If log_(10) tan 31^(@) . log_(10)tan 32^(@) ... log_(10)tan 60^(@) = log10a , then a = ______.

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

let y=sqrt(log_2(3)log_2(12)log_2(48)log_2(192)+16)-log_2(12)log_2(48)+10 find y

let y=sqrt(log_2(3)log_2(12)log_2(48)log_2(192)+16)-log_2(12)log_2(48)+10 find y in N

Let n be a positive integer such that log_2 log _2 log_2 log_2 log_2 (n) lt 0 lt log_2 log_2 log_2(n) . Let l be the number of digits in the binary expansion of n. Then the minimum and the maximum possible values of l are

Solve : log_2 (4-x) = 4 - log_2 (-2-x)

Solve: log_2 (4/(x+3)) > log_2 (2-x)

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is

2^(2-log_2 5)