Home
Class 12
MATHS
If cos(A+B+C)=cosAcosBcosC , then find t...

If `cos(A+B+C)=cosAcosBcosC ,` then find the value of `(8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)

If cos(A+B+C)=cos A cos B cos C , then (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin 2B sin 2C)=

If any triangle ABC, find the value of asin(B-C)+b sin(C-A)+c sin(A-B)dot

If A+C=2b, then the value of (cos C - cos A)/(sin A-sin C) is-

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C) =4sin Asin Bsin Cdot

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

Prove that: (sin(A-C)+2sin A+sin(A+C))/(sin(B-C)+2sin B+sin(B+C))=(sin A)/(sin B)

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to