Home
Class 12
MATHS
log(0. 75)log2sqrt sqrt(1/(0. 125)...

`log_(0. 75)log_2sqrt sqrt(1/(0. 125)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

(i) root(3)(5^(1/log_7 5)+1/(-log_10 0.1)) (ii) log_0.75 log_2 sqrt(sqrt(1/0.125)) (iii) (1/49)^(1+log_7 2) + 5^(-log_(1//5) 7)

The value of log_0.75log_2sqrtroot(-2)((0.125)) is equal to

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .