Home
Class 11
MATHS
y= (27^sinx 81^(1+tanx))^(1/9) has....

`y= (27^sinx 81^(1+tanx))^(1/9)` has.

Promotional Banner

Similar Questions

Explore conceptually related problems

y=e^(sinx)+(tanx)^(x)

y = x^(sinx).(tanx)^(x)

y=(sinx)^(tanx)+(cosx)^(secx)

y = (27 ^ (sin x) * 81 ^ (1 + cos x)) ^ ((1) / (9)) has

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)

If y=(sinx +cosx )^((1+tanx )),then (dy)/(dx) =

int(tanx)/((1-sinx))dx

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)