Home
Class 11
MATHS
(d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)))q...

(d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)))quad (|x|<1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

d/(dx) (sin^(-1) x/a)

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2))]=

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx ) {Sin ^(-1) ""(x)/( sqrt(1+ x^(2)))}=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx) {Sin ^(-1) ""(sqrt((1-x)/2)}=

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is