Home
Class 12
MATHS
Let alpha,beta, are two real solution of...

Let `alpha,beta`, are two real solution of equation `(log_(10)x)^2 + log_(10)x^2 = (log_(10))^2 -1,` then ` sqrt1/(alpha beta)`equal to `(i) 20 (ii) 3 (iii) 10 (iv) 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

Number of real solution of the equation sqrt(log_(10)(-x)) = log_(10) sqrt (x^(2)) is

Number of real solutions of the equation sqrt(log_(10)(-x))=log_(10)(sqrt(x^(2)))

Number of real solutions of the equation sqrt(log_(10)(-x))=log_(10)(sqrt(x)^(2))

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has