Home
Class 12
MATHS
a(x)=3x^6+7x^4+9x^2+2x+1,b(x)=2x+2...

`a(x)=3x^6+7x^4+9x^2+2x+1,b(x)=2x+2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

Discuss the maximum possible number of positive the negative roots of the polynomial equation 9x^9 - 4x^8 + 4x^7 - 3x^6 + 2x^5 + x^3 + 7x^2 + 7x + 2 =0

The expression ((x-1)(x-2)(x^(2) - 9x + 14))/((x-7)(x^(2) - 3x + 2)) in the lowest terms is:

Add the following expressions: (i) 8a-6a b+5b ,\ -6a-a b-8b\ a n d-4a+2a b+3b (ii) 5x^3+7+6x-5x^2,\ 2x^2-8-9x ,\ 4x-2x^2+3x^3,\ 3x^3-9x-x^2\ a n d\ x-x^2-x^3-4

Add the following expressions: (i) 8a-6a b+5b ,\ -6a-a b-8b\ a n d-4a+2a b+3b (ii) 5x^3+7+6x-5x^2,\ 2x^2-8-9x ,\ 4x-2x^2+3x^3,\ 3x^3-9x-x^2\ a n d\ x-x^2-x^3-4

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

lim_(x rarr oo) (3x^(3) + 2x^(2) - 7x + 9)/(4x^(3) + 9x -2)

If f(x)=x^9-6x^8-2x^7+12 x^6+x^4-7x^3+6x^2+x-3, find f(6)dot