Home
Class 11
MATHS
" 35.If "y=sin(x^(7))," prove that "(dy)...

" 35.If "y=sin(x^(7))," prove that "(dy)/(dx)=cos(x^(x))*x^(x)(1+log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(x^(x)), prove that (dy)/(dx)=cos(x^(x))x^(x)(1+log x)

If y=sin(x^x) , prove that (dy)/(dx)=cos(x^x) .x^x(1+logx)

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))