Home
Class 12
MATHS
[" The no of solutions of the Equation "...

[" The no of solutions of the Equation "],[tan^(-1)sqrt(x(x+1))+sin sqrt(x^(2)+x+1)=(pi)/(2)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of the equation tan^(-1) sqrt( x ( x + 1)) + sin^(-1) sqrt(x^(2) + x + 1) = (pi)/(2) is

The number of solution of the equation tan^-1 sqrt(x(x+1)) + sin^-1sqrt(x^2 + x + 1) = pi/2

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

The number of real solutions of the equations: tan^-1 sqrt(x(x+1)) + sin^-1 sqrt(x^2 + x+1) = pi/2 is

Solve the equation tan^(-1)sqrt(x^(2)+x+sin^(-1))sqrt(x^(2)+x+1)=(pi)/(2) .