Home
Class 12
MATHS
[int(0)^(1)x tan^(-1)xdx=],[[" (A) "(pi)...

[int_(0)^(1)x tan^(-1)xdx=],[[" (A) "(pi)/(4)+(1)/(2)," (B) "(pi)/(4)-(1)/(2)," (C) "(1)/(2)-(pi)/(4)," (D) "-(pi)/(4)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of tan^(-1)((2x)/(1+x^(2))) is (a) [-(pi)/(4),(pi)/(4)] (b) (-(pi)/(2),(pi)/(2))(c)(-(pi)/(2),(pi)/(4)) (d) [(pi)/(4),(pi)/(2)]

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (A) (pi)/(2)(B)(pi)/(3)(C)(pi)/(4)(D)(pi)/(4) or 3(pi)/(4) is (A) (pi)/(2)(B)

The nth term of the coresponding series of int_(0)^(1)tan^(-1)xdx is (A) (pi)/(4n) (B) ((1)/(n))tan^(-1)(n-1)(C)(pi)/(2n)(D)tan^(-1)(n)

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :

int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (1)((pi)/(4),(pi)/(2))(2)(-(pi)/(2),(pi)/(4))(3)(0,(pi)/(2))(4)(-(pi)/(2),(pi)/(2))^(((pi)/(4)),(pi)/(2))^(((pi)/(4)))(2)

int_((pi)/(4))^((pi)/(4))(sec xdx)/(1+2^(x))dx

Evaluate the integral,x=int_(0)^((pi)/(4))(1-sin omega t)dt (A) (pi-1)/(omega) (B) (pi-2)/(omega) (C) (pi+1)/(omega) (D) (pi+2)/(omega)

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is/are (a) (22)/(7)-pi( b) (2)/(105)( c) 0 (d) (71)/(15)-(3 pi)/(2)