Home
Class 12
MATHS
lim(x rarr4)[(x^(3/2)-8)/(x-4)]=...

lim_(x rarr4)[(x^(3/2)-8)/(x-4)]=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 4) (x^(3/2)-8)/(x-4) =

Evaluate lim_(x rarr2)(x^(3)-8)/(x-2)

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

If lim_(x rarr4)[(x^n-4^n)/(x-4)] = 48 and n in N , find n.

Consider following statements and identify correct options (i) lim_(x rarr4)((2x)/(x-2)-(8)/(x-4))=lim_(x rarr4)((2x)/(x-4))-lim_(x rarr4)((8)/(x-4)) (ii) lim_(x rarr1)((x^(2)+6x-7)/(x^(2)+5x-6))=(lim_(x rarr1)(x^(2)+6x-7))/(lim_(x rarr1)(x^(2)+5x-6))

Evaluate: lim_(x rarr2)(x^(2)-4)/(x+3)

lim_(x rarr4)(sqrt(x)-2)/(x-4)=

Evaluate the following limit : lim_(x rarr 2) (x^3-8)/(x^2-4) .

lim_(x rarr0)((4+x)^(3)-64)/(x)

Determine whether the statement is true or false lim_(x rarr4)((2x)/(x-4)-(8)/(x-4))=lim_(x rarr4)(2x)/(x-4)-lim_(x rarr4)(8)/(x-4)